Limitations of hybrid systems
نویسنده
چکیده
We examine the ability of combining symbolic and subsymbolic approaches b y means of recursively encoding and decoding structured data. We show that encoding of symbolic data is possible in this w ay { hence neural netw orks seem well suited for control or classi cation in symbolic approaches { whereas decoding requires an increasing complexit y of the decoding function { hence netw orks with this dynamics are not adequate for producing structured data. Real labeled tree structures reject a smooth encoding in general.
منابع مشابه
A novel mathematical model for a hybrid flow shop scheduling problem under buffer and resource limitations-A case study
Scheduling problems play a big role in manufacturing and planning the production for increasing the production efficiency and assigning the resources to operations. Furthermore, in many manufacturing systems there is a physical space between stages that called intermediate buffers. In this study, a model is proposed for minimizing the makespan of a hybrid flow shop scheduling problem with inter...
متن کاملHybrid Fuzzy-PID Application in Boilers to Obtain Optimum Efficiency
Many real time processes have complex, uncertain and nonlinear dynamics. Boilers are nonlinear, time varying, multi-input multi-output (MIMO) systems, whose states generally vary with operating conditions. The major problem in controlling that system is that its drum water pressure and steam flow dynamics include an integrator that results a critically stable behavior. Conventional controller p...
متن کاملOptimization of Combined Heat and Power Systems using a Hybrid Algorithm of Ant and Bee Colony Optimization
Abstract: In the last few years, due to the development of the new equipment in power systems, challenges have appeared in their planning and operation. One of these issues is the development of combined heat and power (CHP) units. These units have the capability to generate heat and electricity simultaneously according to their limitations. Hence, it is necessary for them to think about the ar...
متن کاملElectricity Load Forecasting by Combining Adaptive Neuro-fuzzy Inference System and Seasonal Auto-Regressive Integrated Moving Average
Nowadays, electricity load forecasting, as one of the most important areas, plays a crucial role in the economic process. What separates electricity from other commodities is the impossibility of storing it on a large scale and cost-effective construction of new power generation and distribution plants. Also, the existence of seasonality, nonlinear complexity, and ambiguity pattern in electrici...
متن کاملA Proposed Improved Hybrid Hill Climbing Algorithm with the Capability of Local Search for Solving the Nonlinear Economic Load Dispatch Problem
This paper introduces a new hybrid hill-climbing algorithm (HHC) for solving the Economic Dispatch (ED) problem. This algorithm solves the ED problems with a systematic search structure with a global search. It improves the results obtained from an evolutionary algorithm with local search and converges to the best possible solution that grabs the accuracy of the problem. The most important goal...
متن کاملImproving the performance of financial forecasting using different combination architectures of ARIMA and ANN models
Despite several individual forecasting models that have been proposed in the literature, accurate forecasting is yet one of the major challenging problems facing decision makers in various fields, especially financial markets. This is the main reason that numerous researchers have been devoted to develop strategies to improve forecasting accuracy. One of the most well established and widely use...
متن کامل